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Abstract

Risk scores are simple models that allow users to make quick
risk predictions by adding and subtracting a few numbers.
These models are widely used to predict the risk that an
event will take place within a given time horizon – e.g., to
predict the risk that a patient will suffer a stroke within 24
hours or will survive following a heart failure for at least 3
years. In practice, the models are designed to predict a target
obtained by thresholding a time-to-event outcome, casting a
survival analysis task into a classification task. In this work,
we present a new method to fit risk scores for direct time-to-
event prediction called TSLIM – Time-Adaptive Sparse Lin-
ear Integer Models. Our method trains models by solving a
mixed-integer non-linear program that minimizes the propor-
tional hazard loss and enforces constraints to enforce sparsity
and integrality. Our approach can customize models to obey a
wide range of constraints and inform the customization pro-
cess by returning a certificate of optimality. We evaluate our
models on real-world clinical datasets where we build time-
adaptive risk scores for disease staging and compare them to
standard methods for survival analysis and classification.

1 Introduction
Simple integer risk scores are widely used in modern medi-
cal applications – be it to estimate the risk that a patient will
experience a stroke in critical care [47], will be re-admitted
to a hospital after discharge [17], or will survive after expe-
riencing heart failure [43]1.

The widespread adoption of risk scores in such clinical
decision support tasks stems from their format, which fa-
cilitates scrutiny from non-experts and clinical integration.
Models that let individuals make predictions by adding and
subtracting a few small numbers are easy to use and easy
to understand [26, 42], which allows clinicians to scrutinize
the prediction logic and to make an informed decision as to
whether to use it. Since models allow users to make pre-
dictions by checking a set of conditions, they can be inte-
grated into existing clinical workflow – without extensive
training [38] and using a range of variety of technological
solutions (see e.g., the MDCalc mobile app).
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1For a comprehensive list of clinical risk scores across a wide
range of applications refer to www.mdcalc.com

A considerable number of risk scores that are currently
deployed in such settings predict the probability that an
event will occur within a fixed time period – e.g., the risk
that a patient in critical care will experience a stroke in the
next 24 hours [47], that a patient will be re-admitted to a
hospital within 1 month [17], or that a patient with a history
of heart failure will survive for over 3 years [43]. In prac-
tice, these models predict a binary outcome by thresholding
a time-to-event outcome 2.

The common practice of binarizing time-to-event out-
comes treats what is an inherently a survival prediction task
as a classification. This choice of building a classifier rather
than a survival prediction model comes at a cost:

Censoring Data for real-world clinical risk prediction in-
volves patients who are often lost to follow-up, a phe-
nomenon known as censoring [33]. In the case of remis-
sion prediction, patients who may not have a time associated
with remission could have either not experienced remission
or been lost to follow-up. Binarizing these times would treat
the patients lost to follow-up as patients who did not experi-
ence remission, underestimating risk of remission [see e.g.,
53, 1, for a discussion on how miscalibrated risk estimates
can lead to harmful decisions in medicine]

Time-Adaptivity A binary classifier may have predictive
power at the time-to-event horizon it was trained on, but
may lose this discriminative ability at other time horizons.
The resulting models are inherently tied to the threshold that
was used to define the outcome. This is a risk as we can
no longer evaluate models across broader time horizons and
models may lose their discriminative ability over time. This
functionality may be valuable in settings where we predict
an event of interest over a longer time of patients from dif-
ferent age groups horizons [e.g., mortality within X years as
in 43] – since patients in younger age groups are inherently
more interested in survival at longer time horizons.

Contributions The main contributions of this work are:
• We propose a new risk score model for tasks involving

time-to-event outcomes. Our models provide a single score

2For example, Struck et al. [47] train a risk score to predict
Pr(yi = 1) where yi = 1[ti ≤ 24 hours] indicates if a patient will
have a seizure within the next 24 hours. Here, yi is the target and
ti is the time-to-event outcome

https://apps.mdcalc.com/
www.mdcalc.com


function that end-users can use to scrutinize their predic-
tions. In contrast to existing models, it provides benefits of
survival regression e.g., the ability to obtain risk estimates
at multiple time horizons accounted for censoring.

• We develop an efficient method to learn these models in-
volving solving a mixed integer non-linear program using a
cutting-plane algorithm. It can handle constraints that help
improve the usability of the risk-scoring system and output
a certificate of optimality.

• We demonstrate through several real-world examples that
our approach is able to recover patient strata with high dis-
criminative capability as well as calibration. Further, we
demonstrate that our approach has better performance than
existing approaches that are limited to binary classification.

Related Work
Risk Scores Our work is related to a stream of work on
methods to learn sparse linear classifiers with small integer
coefficients [see e.g., 12, 24, 50, 18, 8, 52, 31, 55, 58, 37,
36, 40]. We focus on models that are designed to output cal-
ibrated risk estimates [see e.g., 52, 8, 36] rather than yes-or-
no predictions [see e.g., 12, 46, 50, 58, 37].

This body of work broadly seeks to develop modern ap-
proaches to build scoring systems, decision aids, and risk
scores. In effect, the vast majority of risk scores that are used
in practice are developed by panels of experts [34, 22] or
by combining logistic regression with heuristics for round-
ing and feature selection. For example, the TIMI Risk Score
of Antman et al. [2] which screens features via hypothesis
tests, fits a logistic regression model on the remaining fea-
tures, and then obtains integer coefficients by scaling and
rounding.

We study a salient class of prediction tasks that can be cast
as classification or survival analysis problems. In practice,
the vast majority of models are designed to solve classifica-
tion tasks by thresholding time-to-event outcomes [see e.g.,
47, 17, 56]. Discussions surrounding model development ig-
nore the potential effects of censoring or the possibility of
more accurate predictions at other time horizons of interest.
Decisions on thresholding stem from convention rather than
validation. For example, the 30-day threshold that is com-
monly used to predict the risk of hospital readmissions [17]
in the United States corresponds to a value chosen by the
Hospital Readmissions Reduction Program enacted under
the Patient Protection and Affordable Care Act [13].

Optimization We train our models by solving a mixed-
integer non-linear programming formulation that fits a sin-
gle model to assign calibrated risk estimates across multi-
ple time horizons and address the bias from censoring. We
solve these instances using a variant of the cutting-plane al-
gorithms used by [7, 52] which relies on the use of a mixed-
integer programming solver with callback functionality such
as CPLEX [29], Gurobi [19], CBC [19].

Our work is broadly related to a stream of machine
learning methods that solve discrete optimization problems
(e.g. mixed-integer programs, and mixed-integer non-linear
programs) with an optimization solver. Even as these are
computationally intractable optimization problems in the

worst case, we can now solve large instances using off-the-
shelf solvers [see e.g., 23]. The viability of this approach
stems from improvements in hardware, software, and re-
search over the last three decades [see e.g., 9], prompting
the development of practical methods for supervised learn-
ing [6, 12, 5, 44, 45, 4, 7, 27, 28].

Transparency & Fairness We propose an approach to
train and evaluate a single model that individuals can use to
obtain risk estimates over their desired time horizon. The re-
sulting approach highlights an alternative strategy to person-
alize models [3], reflects some of the motivation for a stream
of work on preference-based-fairness [57, 49, 32, 54, 16]
and the need for participatory paradigms for prediction [30].

Our work highlights how routine decisions in problem
specification can promote safety and transparency through
model development and evaluation [41]. By training a model
across multiple time horizons, we consider performance
across time horizons that may be of interest to various sub-
populations and use them to guide decisions such as feature
selection [see 48]. This decision ensures that we resulting
model can be evaluated across multiple time horizons to en-
sure that a model will not underperform at longer time hori-
zons – and this effect in itself may be attenuated for minority
subpopulations. In our setting, such effects can be evaluated
through a disaggregated evaluation [see 11].

2 Problem Statement
In this section, we present TSLIM an integer scoring sys-
tem for censored time-to-event outcomes.

2.1 Preliminaries
We consider a standard survival analysis task to predict the
risk of an event at a time occurs from a set of features X .

We start with a dataset of n examples {(xi, ti,∆i)}ni=1.
Each example i consists of features xi = [xi,1, . . . , xi,d] ∈
Rd, a time-to-event outcome ti ∈ R+, and a censoring indi-
cator ∆i := 1[ti is not censored].

Given the dataset, our goal is to estimate a hazard rate
function for the event at time t conditioned on the covari-
ates, x. Here, the hazard rate is a function that describes the
instantaneous rate at which an event occurs for an individ-
ual at a certain time.. More formally the hazard rate can be
described as:

λ(t) := lim
∆t→0

Pr(t < T ≤ t+∆t | T > t)

∆t
.

Reasoning in terms of the hazard rate, λ(t) is natural
in survival analysis and reliability engineering. The hazard
function can be used to estimate other quantities of interest
in time-to-event prediction such as the survival rates.3

2.2 Model Form
We assume that the conditional hazard rate function follows
a proportional hazards (PH) model:

λ(t | X = x) := λ0(t) exp
w⊤x

c
(1)

3The survival rate is the negative exponent of the cumulative
hazard, ie. S(t) = exp

(
−

∫ t

0
λ(t)

)
.
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Figure 1: a) Censoring and Time-to-Event Predictions. Patient C was lost to follow-up after the first year. When estimating
1-year risk, we treat C as a positive (survived) sample. The survival status for C at 2 years was is ambigous, posing a challenge
to traditional risk scoring models, a phenomenon known as censoring. b) Illustrative example of a scoring system produced
by TSLIM: Our proposed approach allows estimation of risk and the corresponding survival curves of the patient across time,
helping clinicians have a better estimate of the patient risk profile.

This model assumes that the ratio between the hazard rate
for a point with features x at time t changes with respect
to the baseline hazard rate λ0(t)

4 and that the rate of of
change is determined by the score function w⊤x

c . In practice
our goal is to estimate w, a sparse set of integer coefficients
that determine the estimated score (or risk level) for a patient
with a certain set of features x through a affine function.
c > 0 is a constant scaling factor that is set by a practi-

tioner based on the problem statement and domain exper-
tise. It determines the difference in terms of hazard ratio
between the various levels of patients stratified by our risk
score model. Smaller values of c would lead to the model
recovering granular stratification while larger values would
lead to fewer recovered risk levels.

2.3 Estimating the Conditional Survival Function
Once the parameters of the model in w are learned using the
cutting plane formulation of MINLP formulation (Equation
7), we estimate individualized survival at a time horizon t,
P̂(T > t|X = x,w) using a non-parametric maximum like-
lihood estimation procedure, more commonly known as the
Breslow’s Estimator [10, 35].

P̂(T > t|X = x,w) = exp
(
− Λ̂0(t)

)exp(w⊤x
c )

and, Λ̂0(t) =
∑
ti<t

1∑
j∈R(ti)

exp (
w⊤xj

c )
(2)

Here, Λ̂0(t) is the estimated baseline cumulative hazard.

2.4 Evaluating Performance
Our goal is to train a risk score that performs well in terms
of the following measures:

Brier Score: : The Brier Score is the Mean Squared Error
of the binary forecast of survival at a certain time horizon

4The base hazard rate λ is an infinite dimensional functional
parameter of the model, which is estimated non-parametrically.

of interest. As a proper scoring rule, the Brier Score gives a
sense of both discriminative performance and calibration.

BS(t) = ED
[(
1{T > t} − P̂(T > t|X)

)2]
Expected ℓ1 Calibration Error (ECE): The ECE measures
the average absolute difference between the observed and
expected (according to the risk score) event rates, condi-
tional on the estimated risk score. At time t, let the predicted
risk score be s(t) = P̂(T > t|X). Then, the ECE is:

ECE(t) = E
[∣∣P(T > t|s(t))− s(t)

∣∣]
by conditioning on the set of all possible estimated integer
risk scores {w⊤xi : i ∈ [n]}.

Area under ROC Curve (AUC): Treating the survival anal-
ysis problem as binary classification at different horizons of
event times and computing the corresponding area under the
curve.

The metrics described above are adjusted for censoring
by standard Thompson-Horvitz style Inverse Propensity of
Censoring Weights (IPCW) estimates learnt with a Kaplan-
Meier estimator over the censoring times (Appendix A).

3 Methodology
We determine the values of the coefficients by solving the
following mixed integer nonlinear program (MINLP):
Definition 1 (Hazard Scoring Problem). The hazard scoring
problem is a discrete optimization problem of the form:

min
w

PL(D;w, c) s.t. w ∈ W and ∥w∥0 ≤ Rmax
(3)

• Here, the is the partial likelihood, PL(D;w, c)

=
n∑

i=1

1∆i ̸=0

(
w⊤xi

c − log
∑

j∈R(ti)

exp (
w⊤xj

c )

)
• ∥w∥0 =

∑d
j=1 1{wj ̸= 0} is the ℓ0-seminorm;

• W ⊂ Zd+1 is a user-specified coefficient set, e.g.
W = {−5, 5}d+1;

• Rmax ∈ Z+ is a user-specified limit on model size.



This problem captures what we desire in a scoring sys-
tem. The objective minimizes the partial likelihood over the
event rate to ensure models that are well-calibrated and have
good discriminative performance. Further it penalizes the
ℓ0-seminorm (the count of non-zero coefficients) for spar-
sity. The constraints restrict coefficients to a set of small
integers such as W := {−5, . . . , 5}d+1, and may be cus-
tomized to encode other model requirements such as those
in Table 1.

Model Requirement Example
Feature Selection Choose between 5 to 10 total features

Group Sparsity Include either male or female but not both

Optimal Thresholding Use at most 3 thresholds for a set of variables:∑100
k=1 1{age ≤ k} ≤ 3

Logical Structure If male is in model, include glucose or bmi ≥ 30

Side Information stage≥ 5 if male=+ve & diabetes=+ve

Table 1: Model requirements that can be addressed by
adding operational constraints

As is standard in survival analysis, we train the model to
optimize the likelihood function:

L(D) ∝
n∏

i=1

λ(t|X = xi)
∆iS(t|X = xi)

Here, S(t) is the survival function, Note that under the as-
sumptions of PH in Equation 1, in practice, the model is
learned by minimizing the partial likelihood function

PL(D;w, c) :=
∑

i:∆i ̸=0

w⊤xi

c − log
∑

j∈R(ti)

exp (
w⊤xj

c )

which is independent of the baseline hazard rate, λ(·). Here,
R(t) is the ‘risk set’ {i ∈ [n] : ti > t} – i.e., the indices of
all points that have survived until time t.

3.1 Cutting-Plane Algorithm
We recover an optimal solution to the MINLP in Equation 5
with the lattice cutting-plane algorithm [52]. The cutting-
plane algorithm solves a surrogate problem that replaces
the loss function with a linear approximation composed of
cutting-planes. This resulting problem can be expressed as a
mixed integer linear program (MILP) rather than an MINLP
(Equation 5), and has the following form:

min
w

L+ ϵR

s.t. L≥PL(wt) +∇PL(wk)(w −wk) k ∈ [K] (loss cuts)

R=
∑
j∈[d]

αj (model size)

Wmax
j αj ≥wj j ∈ [d] (wj > 0 =⇒ αj = 1)

−Wmin
j αj ≥−wj j ∈ [d] (wj < 0 =⇒ αj = 1)

L ∈ [0, . . . , Lmax] (loss)

R ∈ {0, . . . , Rmax} (model size)

wj ∈ {Wmin
j . . . ,Wmax

j } j ∈ [d] (coef for variable j)

αj ∈ {0, 1} j ∈ [d] (αj := 1[wj ̸= 0]) (4)

• L and R are ‘auxiliary’ variables that represent the overall
loss and the model size, respectively. In theory, these are
redundant in that they could be replaced by a single quan-
tity. In practice, we include them explicitly as they allow us
to set bounds on feasible models via variable definitions.

• The parameter ϵ trade-offs between these competing ob-
jectives, and represents the maximum log-likelihood sacri-
ficed to remove a feature from the optimal model.

• The formulation accounts for model size using the indica-
tor variables αj := 1[wj ̸= 0]. These variables are set to 1
whenever wj ̸= 0 through the constraints on α.

• The coefficient for each variable is constrained to small in-
teger values in the constraints. These constraints restrict
each wj to integers from Wmin

j to Wmax
j . By default, we

set these values to Wmin
j = −5 and Wmax

j = +5.
The main difference between the MILP formulation in

(7g) and the MINLP formulation in (5) is that we compute
the loss using a cutting-plane approximation of the loss func-
tion. The cutting-plane approximation is captured through
K cuts. Each cut is a supporting hyperplane to the loss func-
tion at a specific point wk – where the values of wk repre-
sent integer-feasible solutions. Since we work with the par-
tial likelihood (a convex loss function), the cutting-plane ap-
proximation is an under-approximation. For a more compre-
hensive discussion refer to Appendix C.

Algorithm 1 Cutting Plane Algorithm for TSLIM
Input : training data (xi, ti,∆i)

n
i=1; coefficient setW

model size Rmax;
k ← 0 (iteration counter)
l̂0(w)← {0} (approximate loss with an empty set)

V min ← min
w∈Rd

PL(w,D) (set lower bound by solving for reals)

ε←∞ (initialize optimality gap)
w ← {0} (initialize solution set)
while ε > εstop do

(Lk,wk)← provably optimal solution to TSLIM
compute cut parameters l(wk) and∇l(wk)

l̂k+1(w)← max{l̂k(w), l(wk) + ⟨∇l(wk),w −wk⟩}
(update approximate loss)

V min ← Lk + C0

∥∥wk
∥∥
0

(optimal value of TSLIM is lower bound)

if V(wk) < V max then
V max ← V (wk) (update upper bound)

wbest ← wk (update incumbent)
end
ε← 1− V min/V max (update optimality gap)
k ← k + 1 (increment counter)

end

Return: wbest

Algorithm 1 presents the cutting plane approach to recover
a provably optimal solution to the MINLP in Equation 5.
TSLIM is paired with an optimality gap, ε. In practice, a
small optimality gap suggests that we have trained the best
possible risk score that satisfies a specific set of constraints.
If a risk score with a small optimality gap doesn’t generalize,
then one can attribute the performance deficit of the model
to overly restrictive constraints and improve performance by
relaxing them.
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Figure 2: Top: The probability density, hazard and survival functions for the synthetic data stratified by the true risk score.
Bottom: Kaplan-Meier survival curves recovered by TSLIM on the synthetic data for scaling factors c ∈ {

√
2, 2, e}.

synthetic

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.010 0.186 0.637 0.980 0.841 0.699 0.010 0.229 0.751 -
CR 0.012 0.118 0.214 0.983 0.856 0.705 0.014 0.103 0.154 -
LR-L1-6 0.010 0.187 0.637 0.981 0.840 0.698 0.009 0.229 0.752 -
CR-L1-6 0.012 0.120 0.212 0.983 0.855 0.704 0.014 0.109 0.153 -
RiskSLIM 0.010 0.186 0.637 0.977 0.835 0.696 0.009 0.229 0.751 0.0%
TSLIM 0.012 0.118 0.214 0.982 0.856 0.701 0.014 0.101 0.159 0.0%

Table 2: Discriminative performance and Calibration of TSLIM vs. RiskSLIM on the synthetic data.

Dataset Description n d 5-Yr Survival

flchain effect of light chains on survival 6,524 39 86.54%
support survival post ICU discharge 9,105 90 24.55%
seer-lymphoma lymphoma/leukemia survival 60,486 55 54.16%

Table 3: Datasets used in Section 4. n and d denote the number of examples and features in each dataset, respectively. All
datasets are publicly available.

4 Experiments
Synthetic Data We compare the performance of TSLIM
on a synthetic dataset we generate to simualte a censored
time-to-event study. The generative process captures what
we seek in a real world clinical risk prediction task. We sam-
ple binary covariates x1:4 that determine the true Time-to-
Event t∗i along with noisy covariates x4:8 that are exogenous
to the time-to-event outcome. Further, we randomly censor
75% of the population with a censoring time that is drawn

uniformly between 0 and t∗i . The final dataset consists of the
observed time-to-event ti, the covariates xi and the censor-
ing indicators ∆i. Our generative process for the data is

x1:8 ∼ Bernoulli(1/4), s := x⊤
1:4

[
1 1 3 4

]
t∗ ∼ Gamma(1/s), ci ∼ Uniform(0, ti)

∆ ∼ Bernoulli(3/4), t = ∆ · c+ (1−∆) · t∗

Figure 2 presents the true event distributions for the syn-
thetic data.



flchain

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.033 0.111 0.219 0.833 0.817 0.807 0.016 0.097 0.222 -
LR-L1-6 0.034 0.117 0.228 0.823 0.806 0.804 0.021 0.095 0.222 -
COX 0.033 0.090 0.129 0.836 0.822 0.839 0.020 0.027 0.047 -
COX-L1-6 0.034 0.098 0.142 0.817 0.811 0.824 0.030 0.068 0.097 -
RISKSLIM 0.034 0.113 0.223 0.815 0.790 0.778 0.010 0.096 0.223 2.6%

TSLIM 0.034 0.091 0.131 0.830 0.810 0.829 0.009 0.014 0.027 0.0%

support

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.224 0.227 0.253 0.684 0.696 0.721 0.046 0.091 0.292 -
LR-L1-6 0.241 0.244 0.257 0.637 0.663 0.698 0.088 0.121 0.287 -
Cox 0.226 0.219 0.170 0.676 0.696 0.730 0.040 0.035 0.064 -
Cox-L1-6 0.242 0.235 0.183 0.617 0.649 0.696 0.055 0.073 0.069 -
RiskSLIM 0.229 0.236 0.257 0.647 0.644 0.670 0.019 0.088 0.290 14.3%

TSLIM 0.232 0.225 0.173 0.643 0.668 0.707 0.019 0.016 0.028 0.8%

seer-lymphoma

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.138 0.213 0.262 0.808 0.798 0.778 0.022 0.168 0.249 -
LR-L1-6 0.167 0.253 0.294 0.707 0.731 0.753 0.076 0.194 0.261 -
Cox 0.143 0.174 0.177 0.787 0.808 0.813 0.026 0.028 0.023 -
Cox-L1-6 0.170 0.220 0.221 0.678 0.711 0.745 0.067 0.104 0.106 -
RiskSLIM 0.148 0.226 0.273 0.760 0.749 0.728 0.017 0.166 0.248 0.0%

TSLIM 0.151 0.190 0.194 0.746 0.768 0.772 0.034 0.023 0.022 0.0%

Table 4: Discriminative performance and Calibration of TSLIM vs. RiskSLIM on the flchain, support and seer-lymphoma
data. All metrics are reported on the held-out test set and adjusted for censoring using Inverse Propensity of Censoring.

Real-World Clinical Studies We compare and evaluate
the on real-world clinical prediction tasks. Each dataset in-
cludes demographic information such as sex, age, as well
as clinical variables specific to the study or the results of a
medical procedure. Table 3 presents summary statistics of
the real-world datasets employed in the experiments.

flchain (Assay of Serum Free Light Chain): This is a
public dataset introduced by [15] aiming to study the re-
lationship between serum free light chain and mortality. It
includes covariates like age, gender, serum creatinine and
presence of monoclonal gammapothy. We removed all the
individuals with missing covariates and experiment with the
remaining subset of 6,524 individuals.

support The support dataset is derived from a study
of the survival risk of critically-ill patients who were dis-
charged from the ICU conducted by Connors et al. [14].
Here, we have records of 9,105 patients. The outcome vari-
able indicates that a patient has died within six months
of discharge. The features cover chronic health conditions
(e.g., diabetic status, number of comorbidities), vital signs
(e.g., mean blood pressure), and results of lab tests (e.g.,

white blood cell count). The dataset is publicly available5.

seer-lymphoma (Surveillance, Epidemiology and End
Results Study)6 : We consider a cohort of 60,486 patients
who were diagnosed with lymphoma or leukemia cancer be-
tween 2000-2004 and monitored as part of the National Can-
cer Institute SEER study [39]. Here, the outcome variable in-
dicates if a patient dies within five years from any cause, and
45.83% of patients die within the first five years from diag-
nosis. The cohort includes patients from New Jersey, Greater
California, Kentucky, Lousisiana and Georgia. The features
reflect the morphology and histology of the tumor (e.g., size,
metastasis, stage, node count and location, number and loca-
tion of notes) as well as interventions that were administered
at the time of diagnosis (e.g., surgery, chemo, radiology).

Methods We use each dataset to train a risk score with
70% of the data as the training set and test the performance
of the learnt scoring system on the remaining 30% held out
set. The set of possible model coefficients W are restricted to
be between {−5, ..., 5} and we fix the maximum size of the

5https://hbiostat.org/data/
6https://seer.cancer.gov/

https://hbiostat.org/data/
https://seer.cancer.gov/
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Figure 3: TSLIM risk scores on all clinical risk prediction tasks. along with the Kaplan-Meier curves that show risk estimates
across time. As shown, TSLIM recovers adaptive risk scores that stratify patients reliably across multiple horizons.

model Rmax to 6 and scaling factor c to
√
2. We compare

the performance of our proposed TSLIM to RISKSLIM
[51, 52] involving learning of integer scoring systems with
binary outcomes. For completeness we also report perfor-
mance of an unconstrained Logistic Regression (LR) and a
Cox Regression (Cox) on the entire dataset as well as L1
regularized Logistic (LR-L1-6) and Cox Regression (Cox-
L1-6) that select at most Rmax features using the glmnet
[20] package.7

For RiskSLIM, our horizon of a positive outcome is de-
termined using best judgment for each dataset. For flchain
and seer-lymphoma we consider an outcome to be positive
if a patient survived the first 1 year from entry into the study.
For support we consider survival post the first 6-months
from discharge as a positive outcome. We found that for all
three datasets we were able to solve the TSLIM problem
close optimality (< 1%) within a running time of < 10 min-
utes with 8 parallel threads using the IBM CPLEX solver,
while RiskSLIM took longer to converge.

Further we demonstrate the superiority of TSLIM in the
presence of higher amounts of censoring we also experiment
by synthetically augmenting the amount of censoring in the
above datasets by randomly sampling a certain percentage of
the uncensored individuals and censoring their event times
drawn from a uniform distribution in Appendix B.

Results In this section we describe the results of the
proposed TSLIM approach vs RISKSLIM in terms of
both Calibratation and Discriminative performance. Table

7Note that these models recover coefficients that are reals and
thus involve a much more complex hypothesis class than recovered
from RiskSLIM and TSLIM.

2 summarizes performance of TSLIM on the synthetic
dataset. TSLIM had better discriminative performance than
RiskSLIM at all horizons of time and was well calibrated at
all time horizons.

TSLIM consistently had better discrimination perfor-
mance as evidenced from the higher area under ROC scores
at different horizons of time (Table 4). Further While
RiskSLIM was calibrated at the horizon it was trained on,
calibration deteriorated significantly at longer time horizons.
For completeness, we also present the sparse integer scoring
system outputs from TSLIM and RiskSLIM in Figure 3 as
well as the corresponding survival curves stratified by the
estimated risk score by TSLIM.

In order to better present the qualitative differences be-
tween various different bases for the risk scoring models,
we also experiment with different values of the scaling base
c coefficient (Figure 2) and find that smaller values lead to
better stratification with more granular scoring stages, how-
ever this comes at a cost of calibration.

5 Concluding Remarks
We proposed TSLIM an integer risk scoring method that
allows learning highly interpretable scoring systems involv-
ing censored time-to-event outcomes in a data-driven man-
ner. Our formulation involves a mixed integer program and
allows for the specification of several operational constraints
helping improve the utility of the learnt scoring systems.
We benchmark the performance of TSLIM to existing solu-
tions and found that across multiple real world risk estima-
tion studies, TSLIM recovered highly calibrated risk scor-
ing systems with improved discriminative power.
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Supplementary Materials
A Adjusting performance metrics in the presence of censoring

Area under ROC Curve (AUC): The ROC curve is defined as a plot between the True Positive Rate/Sensitivity (TPR) and the
False Positive Rate (FPR) for all thresholds at which a classifier can be deployed. Note that the FPR is equal to 1−Specificity.
We employ the technique proposed by [59, 60] to adjust the Sensitivity using IPCW estimates of the censoring distribution. The
Specificity is computed on the uncensored instances.

Ŝe(c, t) =

n∑
i=1

ωi · 1{πi(t) > c, Ti ≤ t}·
n∑

i=1

ωi · 1{Ti < t}·
; ωi =

δi

n · Ĝ(Ti)
; Ŝp(c, t) =

n∑
i=1

1{πi(t) ≤ c, Ti > t}·
n∑

i=1

1{Ti > t}·

Ŝe(c, t) and Ŝp(c, t) refer to the estimated sensitivity and specificity at classification threshold c and time horizon t respectively.
Ĝ(t) is a Kaplan-Meier estimator of the censoring distribution and πi(t) is the estimated survival probability, P̂(T > t|X =i)
by the classifier. This curve is plotted for all thresholds c ∈ [0, 1] and the area under the curve is used to AUC. For a larger
discussion around comparisons of various strategies to compute ROC curves in the presence of censoring refer to [61].

Expected ℓ1 Calibration Error (ECE): The ECE measures the average absolute difference between the observed and expected
(according to the risk score) event rates, conditional on the estimated risk score. At time t, let the predicted risk score be
R(t) = P̂(T > t|X). Then, the ECE approximates

ECE(t) = E
[∣∣P(T > t|R(t))−R(t)

∣∣]
by partitioning the risk scores R into q quantiles {[rj , rj+1)}qj=1. and computing the Kaplan-Meier estimate of the event rate
KMj(t) ≈ P (T > t|R ∈ [rj , rj+1)), and the average risk score Rj = q

n

∑
i:Ri∈[rj ,rj+1)

Ri in each bin. Altogether, the
estimated ECE is

ÊCE(t) =
1

q

q∑
j=1

|KMj(t)−Rj(t)|.

In practice, we fix the number of quantiles to be the minimum of 20 or the total number of discovered risk levels by the scoring
system for our experiments.

Brier Score (BS): The Brier Score involves computing the Mean Squared Error around the binary forecast of survival at a
certain event quantile of interest. Brier Score is a proper scoring rule and can be decomposed into components that measure
both discriminative performance and calibration.

BS(t) = ED
[(
1{Ti > t} − P̂(T > t|X)

)2]
B̂SIPCW(t) =

1

n

n∑
i=1

[
πi(t)

2
1{T ≤ t, δi = 1}
Ĝi(Ti)

+

(
1− πi(t)

)2
1{T > t}

Ĝi(t)

]
;

where, πi(t) = P̂(T > t|Xi)

The adjusted Brier Score adjusted for Censoring using IPCW is given by B̂SIPCW(t) as proposed in [25, 21] Here, Ĝ(.) is the
Kaplan Meier estimate of the Censoring Distribution. When the Censoring distribution is independent of the Event distribution,
the above quantity is an unbiased estimate of the Brier Score.



B Additional Results
Tables 5, 6 and 7 present the discriminative performance and Calibration of TSLIM in the presence of induced censoring.

flchain

25%+ Censoring

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.033 0.112 0.222 0.820 0.803 0.787 0.018 0.104 0.231 -
LR-L1-6 0.034 0.119 0.232 0.828 0.810 0.816 0.023 0.104 0.231 -
COX 0.033 0.090 0.132 0.829 0.813 0.832 0.016 0.036 0.059 -
COX-L1-6 0.034 0.099 0.145 0.815 0.809 0.822 0.027 0.064 0.098 -
RISKSLIM 0.034 0.114 0.223 0.821 0.800 0.789 0.011 0.104 0.229 2.46%

TSLIM 0.033 0.090 0.133 0.830 0.809 0.829 0.011 0.024 0.046 0.0%

flchain

50%+ Censoring

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.033 0.115 0.226 0.810 0.775 0.759 0.021 0.113 0.240 -
LR-L1-6 0.035 0.121 0.234 0.829 0.802 0.796 0.027 0.114 0.241 -
Cox 0.033 0.092 0.139 0.826 0.809 0.829 0.019 0.057 0.096 -
Cox-L1-6 0.034 0.102 0.156 0.817 0.810 0.822 0.026 0.069 0.116 -
RiskSLIM 0.033 0.114 0.225 0.817 0.807 0.799 0.015 0.112 0.238 2.58%

TSLIM 0.033 0.093 0.143 0.828 0.807 0.827 0.018 0.055 0.095 0.0%

Table 5: Discriminative performance and Calibration of TSLIM vs. RiskSLIM on the flchain data with enhanced censoring.
All metrics are reported on the held-out test set and adjusted for censoring using Inverse Propensity of Censoring.

support

25%+ Censoring

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.225 0.235 0.279 0.681 0.692 0.713 0.066 0.137 0.337 -
LR-L1-6 0.240 0.251 0.283 0.636 0.662 0.693 0.096 0.147 0.338 -
COX 0.229 0.224 0.184 0.673 0.693 0.723 0.083 0.082 0.082 -
COX-L1-6 0.242 0.239 0.194 0.622 0.655 0.695 0.087 0.094 0.086 -
RISKSLIM 0.229 0.242 0.282 0.647 0.651 0.681 0.062 0.140 0.341 13.5%

TSLIM 0.233 0.231 0.189 0.650 0.666 0.697 0.082 0.081 0.086 0.67%

support

50%+ Censoring

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.232 0.251 0.319 0.672 0.685 0.701 0.129 0.206 0.404 -
LR-L1-6 0.245 0.266 0.325 0.636 0.661 0.687 0.141 0.219 0.417 -
Cox 0.243 0.244 0.208 0.661 0.685 0.719 0.171 0.181 0.185 -
Cox-L1-6 0.256 0.258 0.219 0.620 0.653 0.693 0.182 0.194 0.195 -
RiskSLIM 0.240 0.260 0.329 0.645 0.654 0.674 0.131 0.208 0.408 12.71%

TSLIM 0.247 0.248 0.212 0.642 0.669 0.693 0.172 0.184 0.191 0.74%

Table 6: Discriminative performance and Calibration of TSLIM vs. RiskSLIM on the support data with enhanced censoring.
All metrics are reported on the held-out test set and adjusted for censoring using Inverse Propensity of Censoring.



seer-lymphoma

25% Censoring

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.136 0.220 0.273 0.807 0.797 0.775 0.026 0.200 0.281 -
LR-L1-6 0.165 0.261 0.308 0.706 0.729 0.750 0.081 0.228 0.300 -
COX 0.142 0.177 0.182 0.785 0.806 0.811 0.042 0.066 0.065 -
COX-L1-6 0.170 0.225 0.229 0.660 0.692 0.732 0.058 0.101 0.117 -
RISKSLIM 0.146 0.232 0.284 0.761 0.751 0.732 0.030 0.200 0.282 0.0%

TSLIM 0.149 0.191 0.200 0.750 0.769 0.767 0.049 0.074 0.074 0.0%

seer-lymphoma

50% Censoring

Brier Score Area Under ROC Curve ECE OPT
1-Year 5-Year 10-Year 1-Year 5-Year 10-Year 1-Year 5-Year 10-Year

LR 0.137 0.234 0.292 0.805 0.793 0.77 0.064 0.242 0.323 -
LR-L1-6 0.167 0.275 0.329 0.704 0.727 0.747 0.108 0.271 0.351 -
Cox 0.147 0.191 0.200 0.783 0.804 0.807 0.089 0.141 0.154 -
Cox-L1-6 0.172 0.237 0.248 0.674 0.708 0.743 0.121 0.194 0.203 -
RiskSLIM 0.146 0.245 0.302 0.760 0.747 0.725 0.069 0.245 0.326 0.0%

TSLIM 0.153 0.206 0.219 0.744 0.763 0.765 0.094 0.147 0.164 0.0%

Table 7: Discriminative performance and Calibration of TSLIM vs. RiskSLIM on the seer-lymphoma data with enhanced
censoring. All metrics are reported on the held-out test set and adjusted for censoring using Inverse Propensity of Censoring.

C TSLIM as a Mixed Integer Non-Linear Program
Definition 2 (Hazard Scoring Problem). The hazard scoring problem is a discrete optimization problem of the form:

min
w

PL(D;w, c) s.t. w ∈ W and ∥w∥0 ≤ Rmax, (5)

where:

• PL(D;w, c) =
∑n

i=1 1δi ̸=0

(
w⊤xi

c − log
∑

j∈R(ti)
exp (

w⊤xj

c )

)
is the partial likelihood;

• ∥w∥0 =
∑d

j=1 1{wj ̸= 0} is the ℓ0-seminorm;

• W ⊂ Zd+1 is a set of feasible coefficient vectors, e.g., W = {−5, 5}d+1;
• Rmax ∈ Z is a user-specified parameter to impose sparsity in the learnt coefficient set.

This problem captures what we desire in a scoring system. The objective minimizes the partial likelihood over the event
rate which inturn helps recovering models that are well calibrated with good discriminative performance. Further it penalizes
the ℓ0-seminorm (the count of non-zero coefficients) for sparsity. The trade-off parameter ϵ controls the balance between these
competing objectives, and represents the maximum log-likelihood that is sacrificed to remove a feature from the optimal model.
The constraints restrict coefficients to a set of small integers such as W := {−5, . . . , 5}d+1, and may be customized to encode
other model requirements such as those in Table 1.

We optimize the problem in Equation 5 by solving the following MINLP:

min
w

L+ ϵR

s.t. L=

n∑
i=1

1δi ̸=0

(
w⊤xi/c− log

∑
j∈R(ti)

exp (w
⊤xj/c)

)
partial likelihood (6a)

R=
∑
j∈[d]

αj model size (6b)

Wmax
j αj ≥wj j ∈ [d] wj > 0 =⇒ αj = 1 (6c)



−Wmin
j αj ≥−wj j ∈ [d] wj < 0 =⇒ αj = 1 (6d)

L ∈ [0, . . . , Lmax] loss (6e)

R ∈ {0, . . . , Rmax} model size (6f)

wj ∈ {Wmin
j . . . ,Wmax

j } j ∈ [d] coef for variable j (6g)

αj ∈ {0, 1} j ∈ [d] αj := 1[wj ̸= 0] (6h)

• L and R are “auxiliary” variables that represent the overall loss and the model size, respectively. In theory, these variables are
redundant in that they could be replace by the quantities in (6a) and (6b). In practice, we include them because they allow us
to set upper and lower bounds on feasible models via “variable definition constraints” in (6e) and (6f).

• The formulation accounts for model size using the indicator variables αj := 1[wj ̸= 0]. These variables are set to 1 whenever
wj ̸= 0 through the constraints in (6c) and (6d).

• The coefficient for each variable is constrained to small integer values in Constraints . These constraints restrict each wj to
integers from Wmin

j to Wmax
j . By default, we set these values to Wmin

j = −5 and Wmax
j = +5.

Cutting-Plane Formulation We recover an optimal solution to the MINLP in (6) with the lattice cutting-plane algorithm
in [52]. The cutting-plane algorithm solves a surrogate problem that replaces loss function with a linearized “cutting-plane”
approximation. This problem is a MINLP (6) with the following form:

min
w

L+ ϵR

s.t. L≥PL(wt) +∇PL(wt)(w −wt) t ∈ [T ] loss cuts (7a)

R=
∑
j∈[d]

αj model size (7b)

Wmax
j αj ≥wj j ∈ [d] wj > 0 =⇒ αj = 1 (7c)

−Wmin
j αj ≥−wj j ∈ [d] wj < 0 =⇒ αj = 1 (7d)

L ∈ [0, . . . , Lmax] loss (7e)

R ∈ {0, . . . , Rmax} model size (7f)

wj ∈ {Wmin
j . . . ,Wmax

j } j ∈ [d] coef for variable j (7g)

αj ∈ {0, 1} j ∈ [d] αj := 1[wj ̸= 0] (7h)

The main difference with the MIP formulation in (7) and the MINLP formulation in (6) is that we now compute the loss
using a cutting-plane approximation of the loss function. The cutting-plane approximation is captured through T cuts (7a).
Each cut is a supporting hyperplane to the loss function at a specific point wt – where the values of wt represent integer-
feasible solutions. Since we with the Cox partial likelihood (i.e, a convex loss function), the cutting-plane approximation is an
under-approximation.
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