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Abstract

Accurate estimation of the distribution of generation lengths for a language model is critical for var-
ious downstream tasks, including post-training and efficient inference infrastructure planning. Standard
methods assume all generations are complete, but in practice, modern LLMs operate under a fixed context
window size. This constraint frequently results in trajectories being terminated before an end-of-sequence
token is generated, leading to censored observations.

I show that ignoring these truncated trajectories, or treating the maximum context length as the decode
length, introduces a significant downward bias in the estimated length distribution. This phenomenon,
well-known in statistics and epidemiology as right-censoring, necessitates a robust estimation technique.
Through illustrative examples and a simulation on a large-scale, multi-turn conversational dataset, I
demonstrate that estimators that account for right-censoring result in more accurate and unbiased estimate
of the true distribution of decode lengths.

1 Introduction

Alignment of modern Artificial Intelligence often involves making decisions in terms of the distribution of
the length of generations from a large language model. In fact, when training AI models with modern
techniques like on-policy Reinforcement Learning, the length of the generated sequences is an important
machine tool that teachers like me use when making decisions about the underlying policy model Guo et al.
(2025); Wu et al. (2025); Levy et al. (2024); Aggarwal and Welleck (2025); Jin et al. (2024). Furthermore,
in efficient inference infrastructure planning, the expected and maximum generation lengths directly dictate
memory allocation, latency, and throughput capacity. Hence, accurate estimation of the distribution of the
length of generations can help capacity and infrastructure planning for inference when deployed.

In practice, when a large language model is subjected to inference under some distribution of input
prompts cannot perform decoding indefinitely and is constrained by the available resources. Typically,
therefore, decoding is limited to a fixed horizon called the context window.

The standard approach to estimating the distribution of the generation length from a language model
involves a simple statistical aggregation of the generated trajectories and their decoded lengths. Here, the
decoded length typically refers to the number of tokens that were generated by the language model during
the decoding phase up to the [E0S] token. This is a special token that marks the end of the decoded
trajectory from a language model. This approach assumes that all observed generation lengths represent
the true, desired length of the model’s output. However, this assumption breaks down in practical settings
due to a critical engineering constraint, the fixed context window.

Modern Large Language Models operate under a maximum context size, L.y (for example, 1024 or
8192 tokens). If a generation’s length, when combined with the input prompt, exceeds Lyax the generation
is abruptly terminated before the [E0S] token is produced. This results in an incomplete or truncated
observation, where the true length of the trajectory is known only to be greater than the observed cutoff.

In statistics and epidemiology, this scenario is precisely defined as right-censoring (Aalen et al., 2008;
Cox, 2018). The failure to account for right-censored observations is known to introduce a significant
and systematic downward bias in the estimated length distribution. Two naive estimation strategies are
commonly employed in practice, both of which are inadequate: (1) ignoring censored trajectories, which
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Figure 1: (a) Illustration of Truncated Generations and its effect of Decode Length: Yellow
corresponds to the input (prompt), Blue corresponds to the generation. and Red are padding tokens.
Generations marked with [J are trajectories that end in the [E0S] token. (b) The Empirical Cumulative
Densities under various strategies: Ignore Censoring (L), Censored as Complete () and Censoring
Adjusted (KM) (O)

severely limits the sample and biases toward shorter examples; and (2) treating the maximum context length
as the true decode length, which systematically underestimates the true distribution.

For instance, in applications like long-form summarization, open-ended dialogue, or complex code gen-
eration, the model might naturally tend toward outputs longer than the context size. When these lengthy,
yet truncated, generations are counted as having a length equal to the maximum context window L.y or
worse, discarded entirely, the resulting statistics skew heavily toward shorter, unconstrained generations.
To address this deficiency, we propose applying the Kaplan-Meier (KM) Product Limit Estimator, a pow-
erful non-parametric technique to estimate language model generation lengths. We demonstrate that by
correctly utilizing the available data (including the censored observations), the KM estimator provides a
robust, nearly unbiased estimate of the true distribution of length. Our contributions are:

- We formally identify the problem of generation truncation in language model inference as a classic
statistical right-censoring problem.

- Through illustrative examples and simulation, I demonstrate that common naive estimation strategies
introduce a significant downward bias.

- We propose and apply the Kaplan-Meier estimator as a non-parametric solution, showing that it yields
a substantially more accurate estimate of the generation length distribution.

2 Motivation: Fixed Context Length and the Problem of Censoring

Consider the case of RL post-training for reasoning, the length of responses that one can decode until when
performing the online RL step are typically constrained subject to and compute restrictions and available
infrastructure. Thus, in practice when drawing generations from an LLM, not all trajectories are decoded till
completion. As soon as a trajectory reaches the end of its context window, decoding is terminated. Consider
the example in Figure 1 (a), we have a sample (or batch) of prompts that is restricted to the ‘Context
Window’ length of 512 tokens. This context window is typically shared between the input prompt tokens
(or prefix), the generated responses (or decodes) and the padding tokens. In this illustration, trajectories
{1,3,6} are completed with the [E0S] token denoting the completion of the decode.



On the other hand trajectories {0,2,4,5,7} decoded for a few steps till the generations reached the
maximum context window size (Lmax) of 512, but the trajectories were left truncated without completion.
In statistical terms, particularly in the context of density estimation, this phenomenon where the value of
a measurement or observation is only partially known or incomplete is known as censoring. In Figure 1
(b), I present the Empirical Cumulative Densities estimated under the censored data. We have a couple of
options to estimate length distribution under such a dataset:

Strategy 1: Ignore Censoring: One obvious option is to completely ignore trajectories that have not
seen the [EOS] token. This has two fundamental problems. (i) It reduces the effective sample size (in this
case from 8 — 4) preventing robust estimation of the length distribution. (ii) Typically censored trajectories
are longer thus ignoring them leads to an under-estimation of the trajectory length distribution.

Strategy 2: Consider Censored Lengths as Decode Lengths: Another obvious option is to consider
the trajectory length till the end of the context window as its complete length. Since the trajectories
are in-practice longer than their corresponding censored lengths considering the truncated length as the
corresponding length also leads to a significant under-estimation of trajectory length.

This suggests that both the options above are inadequate for accurate estimation of the length distribu-
tion. The estimation must still correctly incorporate the partial data points while still avoiding significant
bias in the corresponding estimate.

The Empirical Distribution Function Consider the simplest case of estimation of the generation length
from a large language model. Let us consider a sample of n input prompts and the corresponding length of
the decodes {(x;,4;)7_,}

Fo(L) = izn: 16, < L}
=1

number of trajectories in the sample < L

n

What this estimator essentially says is that probability of the length of responses to be under a certain length
can be estimated by number of trajectories under that length, divided by the total number of trajectories
in the sample. This simple estimator is known to be optimal owing to the well known Glivenko-Cantelli
theorem (Tucker, 1959).

The KM Estimator for Density Estimation The Kaplan-Meier (KM) estimator (Kaplan and Meier,
1958) is a non-parametric statistic used to estimate a density function such as that of lengths, which is the
probability that a trajectory is smaller than a certain length ¢. The KM estimator (also called a product limit
estimator) handles censored data (incomplete observations) by assuming that censoring occurs independently
of trajectory completion. The result is a step function that changes value only at observed trajectory lengths.

FL)=1- ] (12) (1)

;<L

This represents the cumulative distribution function (CDF) for the trajectory length data, where d; is the
number of trajectories that were completely decoding with a length ¢; and n; is the number of trajectories
yet to finish decoding till completion.

Additionally, summary statistics such as mean and median length of generations can be obtained rela-
tively easily from the full estimated cumulative density F,,. Specifically the median is the length at which
estimated cumulative density attains the value of 1/2. On the other hand, the mean (or ezpected) generation
length can be obtained using the following straightforward formula from elementary statistics:

E[L] = /OOO (1 - ﬁn(L)) dr, 2)

which corresponds to the area under the Kaplan-Meier survival function of the distribution.



3 Simulation
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Figure 2: The empirical cumulative densities under different estimation strategies: Assuming the
Censored Length to be the True Length, as well as Ignoring the Censored Trajectories leads to significant
underestimation of Trajectory Length. Error is the L; distance in estimation of the cumulative density at
length of 256 tokens. Adjusting for censoring with a Kaplan-Meier curve result in a more accurate estimate.

In this section, I present a simulation to demonstrate the efficacy of the censoring adjusted approach for
estimating generation length distribution using the popular Helpfulness dataset (Bai et al., 2022) involving
chatbot style multi-turn conversations. For the purposes of simulation, the last turn of the assistant response
is considered as the decode while the rest is considered to be the input prompt. I restrict the context window
to be 512 tokens and only consider input prompts with a length less than the total context window. For
prompts that have a total length of over 512 tokens we consider the decoded trajectories to be censored,
while for the others we consider the decodes to be complete. Thus by experimental design,

Is Trajectory Complete = 1{True Decode Length + Input Prompt < 512}
Censored Decode Length = 512 — Input Prompt Length

Figure 3 presents the estimated cumulative densities from the different strategies as well as the Kaplan-
Meier approach on the Train and Test splits of the Helpfulness Dataset. We evaluate the estimated P(L <
256) and compare it to the true value in the corresponding table in terms of squared error. Notice that the
KM approach consistently gives more accurate predictions as evidenced quantitatively as well as in from
visual inspection in the Figure.

4 Conclusion

In this paper, I present the practical problem of estimating trajectory lengths of generations drawn from a
language model under context size constraints. In practice, accurate estimation is challenging and requires
accounting for observations that are censored. Through an illustrative example and a simulation, I show
how the Kaplan-Meier Product Limit estimator is a better alternative for estimation of the distribution of
trajectory lengths. This and other recent papers (Nagpal, 2025; Davidov et al., 2025), demonstrate how
classic statistical thinking can be useful for the new science of AI Alignment.
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